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A solution is presented for the problem of the nonsteady temperature
field in a system consisting of 2 metal and a moving heat carier.
Flow in symmetrical plane (and cylindrical) channels is considered.
The problem is solved by an operational method using a Laplace-
Carson functional transform. )

In solving various thermophysical problems, it is
often necesgsary to investigate the nonsteady tem-
perature fields in a system comprising a metal and a
moving heat-transfer agent for given conditions at
the inside and outside channel walls. This necessity
arises, for example, in investigating the dynamic
processes in heat-exchange equipment and connecting
channels.

Consider a plane symmetrical channel (figure, a)
through which flows a heat-transfer agent whose ini-
tial temperature state is characterized by the zero
temperature distribution, while the outer surface is
ideally insulated. The geometric characteristics of
the channel are as follows: 0 = X < +0; =0 < zZ < +0;
—L ~ § = y = L + 0; the thickness of the metal wall is
equal to 4.

If at a given instant there is a sudden change, for
example, an increase, in the temperature of the heat-
transfer agent at the channel inlet, it is seen that, as
the heat-transfer agent moves along the channel, it
heats the metal of the walls.

We assume that: the conductive heat transfer along
the channel is negligibly small; the specific weight and
mass specific heat of the heat-transfer agent, the
thermal conductivity of the metal, the coefficient of
heat transfer from the heat-transfer agent to the
metal, and the rate of flow of the heat-transfer agent
in the channel are constant throughout the transient
process; the amount of heat transferred from the
heat-transfer agent to the metal is proportional to the
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Plane and cylindrical symmetrical channels:
a) plane; b) cylindrical.

coefficient of heat transfer from the heat-transfer
agent and the inner surface of the channel wall; the
temperature of the heat-transfer agent is averaged
over the channel cross section (this assumption is
valid for highly turbulent flows); the temperature
fields of the heat transfer agent and the metal in any
section z = const coincide,

If now, in view of the symmetry of the problem, we
consider half the channel, locating the coordinate
origin at the point x =0, y =L, z = const and specify
at the inlet a constant perturbation, equal to unity,
with respect to the temperature of the heat-transfer
agent, then the nonsteady temperature fields in the
heat-transfer agent and the metal are mathematically
described by afirst-order linear equation—the equation

of heat propagation in the heat-transfer agent [1]:
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and by the linear equation of heat conduction with
boundary conditions of the third kind [2]:
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Given this description of the heat-transfer process
in the channel, it is possible to distinguish a series of
characteristic times: a) the time of propagation of the
input signal along the channel, 7+ (determined by the
flow velocity of the heat-transfer agent); b) the time
of heat transfer from the fluid to the metal, 7, (deter-
mined by the coefficient of heat transfer from the
heat-transfer agent to the metal); and c¢) the time of
heat propagation in the metal, 7, (determined by the
thermal conductivity of the metal),

In a number of cases, depending on the relationship
between these times, the heat-conduction equation is
eliminated from the mathematical model formulated
above,

These cases are:

1) Tas Ty = 0; 7w = M, where M is a certain
constant. In this case, the metal of the channel is
combined with the heat-transfer agent.
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2) 7w 03 T = M; 7y = N, where N is a certain
constant. If the entire dynamic process in question is
of only slight duration, the heat conduction equation
can be eliminated from the mathematical model.

If the characteristic times are equal, or Ty is
sufficiently large (as compared with 74 and Ty )s the
heat-conduction equation cannot be neglected. In this
case, an approximate solution is obtained, for ex-
ample, by dividing the wall metal into a number of
regions, with given temperature distribution, i.e.,
the heat-conduction equation is replaced by a system
of ordinary differential equations.

In all the cases considered above, determining the
corresponding error is quite a complicated matter;
therefore, there is some interest in finding an exact
analytic solution for subsequent comparison with the
simplified models.

There follows a solution in quadratures giving the
nonsteady temperature fields for a heat-transfer agent
flowing in a plane or cylindrical symmetrical channel.

Plane symmetrical channel. The nonsteady tem-
perature fields of the heat-transfer agent and the
metal for a plane symmetrical channel are described,
with the given assumptions, by Egs. (1)-(4).

The solution of system (1)—(4) is found by means of
a Laplace-Carson functional transform. In the trans-
form region, it has the solution
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4n are the roots of the transcendental equation
'ctg — L i
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whose solution is given, for example, in [2]. The
inverse transform of the n-th term of the infinite
product

ﬁl o { a, (,,1+ B,J}

is found in the form [3]
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Functions of this type have been investigated quite
thoroughly and tabulated (see {4, 5]).

Using the rule for finding the inverse transform
from a transform product [3], and denoting by St the
operator of successive convolution of the functions 6y
with differentiation, i.e.,

=2
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we write the solution for the temperature of the heat-

transfer agent and the metal wall in the form

0 at t<i,
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If we now consider the problem with a variable tem-
perature at the channel inlet 6in(t), we can write the
solution for the temperature of the heat-transfer agent
and the metal in the form
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In (11) and (13),

2 sin [p,] cos [un {j;—y]

By F S {fhy] COS [fi,]

@, =

Cylindrical symmetrical channel. We now consider
a symmetrical cylindrical channel (figure, b) semi-
infinite in the direction of the x-axis. The thickness
of the metal wall is equal to ry — ry.



With the same assumptions asforthe plane channel,
the mathematical model describing the nonsteady tem-
perature fields in a cylindrical symmetrical channel
has the form:

the equation of heat transport in the moving heat-~
transfer agent
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the boundary and initial conditions
0o =1, 8,0 =0, (15)

the heat conduction equation for the metal of the
cylinder in cylindrical coordinates
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the boundary and initial conditions
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We find the solution for the temperature 6(x,t) of
the heat-transfer agent and the temperature T(x, r,t)
of the metal.

The construction of the solution for system (14)~
(17) is analogous to the case of a plane symmetrical
channel; therefore, omitting the intermediate calcu-
lations, we have
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In the case of a variable inlet temperature 8in(t),
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The following notation has been used in Eqs. (18)—
(21):
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2J; {mp,) = Jo(mp,)— Iy (mpy),
271 () = Jo (Ra) — J2 (1)
2N} (1) = No () — N3 (o),
2N} (M o) = No (m o) — No (m ). (22)

un are the roots of the following transcendental
equation:
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Jy () Ny (mp) —
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The given equation has a denumerable set of posi-
tive roots

here,
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The first approximate value of up can be deter-
mined graphically, for example. The zeros on the
left-hand side of Eq. (23) are determined from the
solution of the equation

Jo (W) Na(mp) — No () Jy (mp) = 0, (24)

and the points at which the left-hand side goes to infin-
ity from the solution of the equation

Ji () Ny(mp)— Ny (p) Jy(mp) = 0. (25)

The first six roots of Egs. (24) and (25) for various m
are presented in [6]. )
The form of solutions (10)—(13) and (18)—(21) is
quite complicated. This applies particularly to the
construction of the functions S, (18, and S,[]%,,
n=1 n=1

when it is necessary to carry out convolution of the
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functions 6y or yp with subsequent differentiation. For
the beginning of the transient process, this compléxity
can be eliminated by using the asymptotic representa-
tion of a Bessel function of imaginary argument I, in
the neighborhood of zero [6]:
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The approximate form of the functions Hn(x,t) ob-
tained makes it possible to perform the operations of
integration and differentiation quite simply, the region
of application of formula (27) being determined by the
region of applicability of expression (26).

In conclusion, we note that if we content ourselves
with the first terms of the expansion, i.e., if we write
the solutions in the form (e.g., for the case of a plane
channel and unit perturbation at the inlet)

T y t)y=
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we see that, physically, this corresponds to the case
of a thin, highly heat-conducting channel wall. Similar
problems were examined, for example, in [7,8,9].

NOTATION

fin is the temperature of the heat-transfer agent at
the channel inlet; 0 and T are, respectively, the tem-
peratures of the heat-transfer agent and of the metal
for unit jump in inlet temperature; 6~ and T are the
same for an arbitrary change in inlet temperature; Bi
is the Biot number; « is the coefficient of heat trans-
fer from heat-transfer agent to channelwall; C, v, and
w are, respectively, the specific heat, specific weight,
and velocity of the heat-transfer agent; A and a are,
respectively, the thermal conductivity and thermal
diffusivity of the metal; t is the time; x, y, and z are
coordinate axes; r is the variable radius; r; and r,
are, respectively, the inside and outside radii of the
cylinder; s is the cross-sectional area of the heat-
transfer agent in the cylindrical channel; 2L is the
width of the plane channel; 0 is the thickness of the

| 0 at i< il . plane channel wall; L~! is the Laplace-Carson inverse
0(x, ) =1 @ (28) transform operator; Jp(x), Np(x), Ip(x) are the cylin-
, exp {—— Ay k—} 0y (x f— —) at f>-—, drical Bessel and Neumann functions and the Bessel
{ w @ function of imaginary argument, respectively.
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